With online social platforms gaining popularity as venues of behavior change, it is important to understand the ways in which these platforms facilitate peer interactions. In this paper, we characterize temporal trends in user communication through mapping of theoretically-linked semantic content. We used qualitative coding and automated text analysis to assign theoretical techniques to peer interactions in an online community for smoking cessation, subsequently facilitating temporal visualization of the observed techniques. Results indicate manifestation of several behavior change techniques such as feedback and monitoring and rewards. Automated methods yielded reasonable results (F-measure=0.77). Temporal trends among relapsers revealed reduction in communication after a relapse event. This social withdrawal may be attributed to failure guilt after the relapse. Results indicate significant change in thematic categories such as social support, natural consequences, and comparison of outcomes pre and post relapse. Implications for development of behavioral support technologies that promote long-term abstinence are discussed.